Solved

Provide an Appropriate Response r=f(θ)r = f ( \theta ) From θ=α\theta = \alpha

Question 66

Short Answer

Provide an appropriate response.
-The area of the surface formed by revolving the graph of r=f(θ)r = f ( \theta ) from θ=α\theta = \alpha to θ=β\theta = \beta about the line θ=0\theta = 0 (the polar axis) is SA=αβ2πrsinθr2+(drdθ)2 dθ\mathrm { SA } = \int _ { \alpha } ^ { \beta } 2 \pi \mathrm { r } \sin \theta \sqrt { \mathrm { r } ^ { 2 } + \left( \frac { \mathrm { dr } } { \mathrm { d } \theta } \right) ^ { 2 } } \mathrm {~d} \theta . The area of the surface formed by revolving the graph of r=f(θ)\mathrm { r } = \mathrm { f } ( \theta ) from θ=α\theta = \alpha to θ=β\theta = \beta about the line θ=π2\theta = \frac { \pi } { 2 } is SA=αβ2πrcosθr2+(drdθ)2 dθ\mathrm { SA } = \int _ { \alpha } ^ { \beta } 2 \pi \mathrm { r } \cos \theta \sqrt { \mathrm { r } ^ { 2 } + \left( \frac { \mathrm { dr } } { \mathrm { d } \theta } \right) ^ { 2 } } \mathrm {~d} \theta . Use the idea underlying these two integral formulas to find the surface area of the torus formed by revolving the circle r=r = a about the line r=bsecθr = b \sec \theta where 0<a<b0 < a < b .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions