Solved

Graph Hyperbolas Not Centered at the Origin
Find the Location (x1)249(y+4)236=1\frac { ( x - 1 ) ^ { 2 } } { 49 } - \frac { ( y + 4 ) ^ { 2 } } { 36 } = 1

Question 6

Multiple Choice

Graph Hyperbolas Not Centered at the Origin
Find the location of the center, vertices, and foci for the hyperbola described by the equation.
- (x1) 249(y+4) 236=1\frac { ( x - 1 ) ^ { 2 } } { 49 } - \frac { ( y + 4 ) ^ { 2 } } { 36 } = 1


A) Center: (1,4) ( 1 , - 4 ) ; Vertices: (6,4) ( - 6 , - 4 ) and (8,4) ( 8 , - 4 ) ; Foci: (185,4) ( 1 - \sqrt { 85 } , - 4 ) and (1+85,4) ( 1 + \sqrt { 85 } , - 4 )
B) Center: (1,4) ( - 1,4 ) ; Vertices: (8,4) ( - 8,4 ) and (6,4) ( 6,4 ) ; Foci: (185,4) ( - 1 - \sqrt { 85 } , 4 ) and (1+85,4) ( - 1 + \sqrt { 85 } , 4 )
C) Center: (1,4) ( 1 , - 4 ) ; Vertices: (6,4) ( - 6,4 ) and (8,4) ( 8,4 ) ; Foci: (185,4) ( 1 - \sqrt { 85 } , 4 ) and (1+85,4) ( 1 + \sqrt { 85 } , 4 )
D) Center: (1,4) ( 1 , - 4 ) ; Vertices: (5,4) ( - 5 , - 4 ) and (9,4) ( 9 , - 4 ) ; Foci: (2+85,3) ( 2 + \sqrt { 85 } , - 3 ) and (3+85,3) ( - 3 + \sqrt { 85 } , - 3 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions