Solved

Graph Hyperbolas Not Centered at the Origin
Find the Location (y1)29(x2)2100=1\frac { ( y - 1 ) ^ { 2 } } { 9 } - \frac { ( x - 2 ) ^ { 2 } } { 100 } = 1

Question 57

Multiple Choice

Graph Hyperbolas Not Centered at the Origin
Find the location of the center, vertices, and foci for the hyperbola described by the equation.
- (y1) 29(x2) 2100=1\frac { ( y - 1 ) ^ { 2 } } { 9 } - \frac { ( x - 2 ) ^ { 2 } } { 100 } = 1


A) Center: (2,1) ( 2,1 ) ; Vertices: (2,2) ( 2 , - 2 ) and (2,4) ( 2,4 ) ; Foci: (2,1109) ( 2,1 - \sqrt { 109 } ) and (2,1+109) ( 2,1 + \sqrt { 109 } )
B) Center: (2,1) ( - 2 , - 1 ) ; Vertices: (2,4) ( - 2 , - 4 ) and (2,2) ( - 2,2 ) ; Foci: (2,1109) ( - 2 , - 1 - \sqrt { 109 } ) and (2,1+109) ( - 2 , - 1 + \sqrt { 109 } )
C) Center: (2,1) ( 2,1 ) ; Vertices: (2,1109) ( 2,1 - \sqrt { 109 } ) and (2,1+109) ( 2,1 + \sqrt { 109 } ) ; Foci: (2,2) ( 2 , - 2 ) and (2,4) ( 2,4 )
D) Center: (2,1) ( 2,1 ) ; Vertices: (2,1) ( 2 , - 1 ) and (3,5) ( 3,5 ) ; Foci: (2,2109) ( 2,2 - \sqrt { 109 } ) and (3,2+109) ( 3,2 + \sqrt { 109 } )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions