Solved

Solve Applied Problems Involving Hyperbolas
Solve the Problem (0,3)( 0,3 )

Question 52

Multiple Choice

Solve Applied Problems Involving Hyperbolas
Solve the problem.
-A satellite following the hyperbolic path shown in the picture turns rapidly at (0,3) ( 0,3 ) and then moves closer and closer to the line y=52x\mathrm { y } = \frac { 5 } { 2 } \mathrm { x } as it gets farther from the tracking station at the origin. Find the equation that describes the path of the satellite if the center of the hyperbola is at (0,0) ( 0,0 ) .
 Solve Applied Problems Involving Hyperbolas Solve the problem. -A satellite following the hyperbolic path shown in the picture turns rapidly at  ( 0,3 )   and then moves closer and closer to the line  \mathrm { y } = \frac { 5 } { 2 } \mathrm { x }  as it gets farther from the tracking station at the origin. Find the equation that describes the path of the satellite if the center of the hyperbola is at  ( 0,0 )  .    A)   \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { \frac { 36 } { 25 } } = 1  B)   \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { \left( \frac { 75 } { 6 } \right)  ^ { 2 } } = 1  C)   \frac { y ^ { 2 } } { \frac { 36 } { 25 } } - \frac { x ^ { 2 } } { 9 } = 1  D)   \frac { x ^ { 2 } } { \left( \frac { 75 } { 6 } \right)  ^ { 2 } } - \frac { y ^ { 2 } } { 9 } = 1


A) y29x23625=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { \frac { 36 } { 25 } } = 1
B) x29y2(756) 2=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { \left( \frac { 75 } { 6 } \right) ^ { 2 } } = 1
C) y23625x29=1\frac { y ^ { 2 } } { \frac { 36 } { 25 } } - \frac { x ^ { 2 } } { 9 } = 1
D) x2(756) 2y29=1\frac { x ^ { 2 } } { \left( \frac { 75 } { 6 } \right) ^ { 2 } } - \frac { y ^ { 2 } } { 9 } = 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions