Solved

Apply Gaussian Elimination to Systems Without Unique Solutions
Use Gaussian x+y+z=7xy+2z=72x+3z=14\begin{array} { r } x + y + z = 7 \\x - y + 2 z = 7 \\2 x + 3 z = 14\end{array}

Question 129

Multiple Choice

Apply Gaussian Elimination to Systems Without Unique Solutions
Use Gaussian elimination to find the complete solution to the system of equations, or state that none exists.
- x+y+z=7xy+2z=72x+3z=14\begin{array} { r } x + y + z = 7 \\x - y + 2 z = 7 \\2 x + 3 z = 14\end{array}


A) {(3z2+7,z2,z) }\left\{ \left( - \frac { 3 z } { 2 } + 7 , \frac { z } { 2 } , z \right) \right\}
B) {(3z27,z2,z) }\left\{ \left( - \frac { 3 z } { 2 } - 7 , \frac { z } { 2 } , z \right) \right\}
C) {(3z2+7,2z,z) }\left\{ \left( - \frac { 3 z } { 2 } + 7,2 z , z \right) \right\}
D) {(3z27,2z,z) }\left\{ \left( - \frac { 3 z } { 2 } - 7,2 z , z \right) \right\}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions