Solved

Solve the Problem x1y11x2y21x3y31=0,\left| \begin{array} { l l l } x _ { 1 } & y _ { 1 } & 1 \\x _ { 2 } & y _ { 2 } & 1 \\x _ { 3 } & y _ { 3 } & 1\end{array} \right| = 0 ,

Question 131

Multiple Choice

Solve the problem.
- x1y11x2y21x3y31=0,\left| \begin{array} { l l l } x _ { 1 } & y _ { 1 } & 1 \\x _ { 2 } & y _ { 2 } & 1 \\x _ { 3 } & y _ { 3 } & 1\end{array} \right| = 0 ,
then the points (x1,y1) ,(x2,y2) \left( x _ { 1 } , y _ { 1 } \right) , \left( x _ { 2 } , y _ { 2 } \right) , and (x3,y3) \left( x _ { 3 } , y _ { 3 } \right) are collinear. If the determinant does not equal 0 , then the points are not collinear. Are the points (5,7) ,(0,1) ( 5,7 ) , ( 0,1 ) , and (20,25) ( 20,25 ) collinear?


A) Yes
B) No

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions