Solved

 A point is moving along the graph of the function y=19x2+4 such that dxdt=2\text { A point is moving along the graph of the function } y = \frac { 1 } { 9 x ^ { 2 } + 4 } \text { such that } \frac { d x } { d t } = 2

Question 80

Multiple Choice

 A point is moving along the graph of the function y=19x2+4 such that dxdt=2\text { A point is moving along the graph of the function } y = \frac { 1 } { 9 x ^ { 2 } + 4 } \text { such that } \frac { d x } { d t } = 2 centimeters per second. Find dydt\frac { d y } { d t } when x=2x = 2 .


A) dydt=95\frac { d y } { d t } = - \frac { 9 } { 5 }
B) dydt=9200\frac { d y } { d t } = \frac { 9 } { 200 }
C) dydt=9400\frac { d y } { d t } = \frac { 9 } { 400 }
D) dydt=9400\frac { d y } { d t } = - \frac { 9 } { 400 }
E) dydt=9200\frac { d y } { d t } = - \frac { 9 } { 200 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions