Solved

Find the Relative Minima Of f(x)=cos2(9x) on the interval (0,1.396) by applying f ( x ) = \cos ^ { 2 } ( 9 x ) \text { on the interval } ( 0,1.396 ) \text { by applying }

Question 117

Multiple Choice

Find the relative minima of f(x) =cos2(9x)  on the interval (0,1.396)  by applying f ( x ) = \cos ^ { 2 } ( 9 x ) \text { on the interval } ( 0,1.396 ) \text { by applying } the First Derivative Test. Round numerical values in your answer to three decimal places.


A) relative minima: (0.175,0) (0.349,0) ,(0.698,0) ( 0.175,0 ) ( 0.349,0 ) , ( 0.698,0 )
B) relative minima: (0.175,0) ,(0.524,0) ,(0.873,0) ,(1.222,0) ( 0.175,0 ) , ( 0.524,0 ) , ( 0.873,0 ) , ( 1.222,0 )
C) relative minima: (0.698,0) ,(0.873,0) ,(1.222,0) ,(0.524,0) ( 0.698,0 ) , ( 0.873,0 ) , ( 1.222,0 ) , ( 0.524,0 )
D) relative minima: (0.349,1) ,(0.698,1) ,(1.047,1) ( 0.349,1 ) , ( 0.698,1 ) , ( 1.047,1 )
E) relative minima: (0.349,1) ,(0.698,0) ,(1.047,0) ( 0.349,1 ) , ( 0.698,0 ) , ( 1.047,0 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions