menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    Calculus Study Set 1
  4. Exam
    Exam 5: Antiderivatives and Indefinite Integration
  5. Question
    Find the Area of the Shaded Region\(y = \frac { 1 } { 4 } e ^ { x }\)
Solved

Find the Area of the Shaded Region y=14exy = \frac { 1 } { 4 } e ^ { x }y=41​ex

Question 84

Question 84

Multiple Choice

Find the area of the shaded region. y=14exy = \frac { 1 } { 4 } e ^ { x }y=41​ex  Find the area of the shaded region.  y = \frac { 1 } { 4 } e ^ { x }     A)  \frac { 1 } { 4 }  B)   4 e  C)  1 D)   \frac { e } { 4 }  E)   \frac { e - 1 } { 4 }


A) 14\frac { 1 } { 4 }41​
B) 4e4 e4e
C) 1
D) e4\frac { e } { 4 }4e​
E) e−14\frac { e - 1 } { 4 }4e−1​

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q79: Use the summation formulas to rewrite

Q80: Evaluate the integral. <span class="ql-formula"

Q81: Evaluate the following definite integral.

Q82: Apply the Trapezoidal Rule and Simpson's

Q83: Use the Trapezoidal Rule to approximate

Q85: <span class="ql-formula" data-value="\text { Use the differential

Q86: <span class="ql-formula" data-value="\text { Use integration to

Q87: Evaluate the definite integral of the

Q88: <span class="ql-formula" data-value="\text { Find } F

Q89: Use the properties of summation and

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines