Solved

 Use integration to find the particular solution of the differential equation dydx=lnxx\text { Use integration to find the particular solution of the differential equation } \frac { d y } { d x } = \frac { \ln x } { x }

Question 86

Multiple Choice

 Use integration to find the particular solution of the differential equation dydx=lnxx\text { Use integration to find the particular solution of the differential equation } \frac { d y } { d x } = \frac { \ln x } { x } which passes through the point (1,3) ( 1 , - 3 ) .


A) y=lnx+3y = \ln x + 3
B) y=(lnx) 223y = \frac { ( \ln x ) ^ { 2 } } { 2 } - 3
C) y=(lnx) 22+3y = \frac { ( \ln x ) ^ { 2 } } { 2 } + 3
D) y=3(lnx+1) y = - 3 ( \ln x + 1 )
E) y=lnx3y = \ln x - 3 \

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions