Solved

Find Y
A) y=19arcsin(x9)+π36y = \frac { 1 } { 9 } \arcsin \left( \frac { x } { 9 } \right) + \frac { \pi } { 36 }

Question 34

Multiple Choice

 Use the differential equation dydx=181+x2 and the initial condition y(9) =π to \text { Use the differential equation } \frac { d y } { d x } = \frac { 1 } { 81 + x ^ { 2 } } \text { and the initial condition } y ( 9 ) = \pi \text { to } find y.


A) y=19arcsin(x9) +π36y = \frac { 1 } { 9 } \arcsin \left( \frac { x } { 9 } \right) + \frac { \pi } { 36 }
B) y=136arctan(x9) +17π81y = \frac { 1 } { 36 } \arctan \left( \frac { x } { 9 } \right) + \frac { 17 \pi } { 81 }
C) y=19arctan(x9) +35π36y = \frac { 1 } { 9 } \arctan \left( \frac { x } { 9 } \right) + \frac { 35 \pi } { 36 }
D) y=181arctan(x9) +π36y = \frac { 1 } { 81 } \arctan \left( \frac { x } { 9 } \right) + \frac { \pi } { 36 }
E) y=181arcsin(x9) +35π36y = \frac { 1 } { 81 } \arcsin \left( \frac { x } { 9 } \right) + \frac { 35 \pi } { 36 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions