Solved

Point (π,5)( \pi , 5 ) A) r=lntant+1+5r = \ln | \tan t + 1 | + 5

Question 31

Multiple Choice

 Find the solution of the differential equation drdt=sec2ttant+1 which passes through the \text { Find the solution of the differential equation } \frac { d r } { d t } = \frac { \sec ^ { 2 } t } { \tan t + 1 } \text { which passes through the } point (π,5) ( \pi , 5 )


A) r=lntant+1+5r = \ln | \tan t + 1 | + 5
B) r=2lnsect+1r = 2 \ln | \sec t + 1 |
C) r=lntant+1r = \ln | \tan t + 1 |
D) r=5lntant+1r = 5 \ln | \tan t + 1 |
E) r=2lnsint+5r = 2 \ln | \sin t | + 5

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions