Solved

Write and Solve the Differential Equation That Models the Following YY

Question 41

Multiple Choice

Write and solve the differential equation that models the following verbal statement: The rate of change of YY with respect to ss is proportional to
50s50 - s .


A) dYds=k(50s) 1,Y=kln(50s) 2+C\frac { d Y } { d s } = k ( 50 - s ) ^ { - 1 } , Y = - k \ln ( 50 - s ) ^ { 2 } + C
B) dYds=k(50s) 1,Y=k(50s) +C\frac { d Y } { d s } = k ( 50 - s ) ^ { - 1 } , Y = - k ( 50 - s ) + C
C) dYds=k(50s) ,Y=k2(50s) 2+C\frac { d Y } { d s } = k ( 50 - s ) , Y = - \frac { k } { 2 } ( 50 - s ) ^ { 2 } + C
D) dYds=k(50s) 3,Y=k4(50s) 4+C\frac { d Y } { d s } = k ( 50 - s ) ^ { 3 } , Y = - \frac { k } { 4 } ( 50 - s ) ^ { 4 } + C
E) dYds=k(50s) 2,Y=k3(50s) 3+C\frac { d Y } { d s } = k ( 50 - s ) ^ { 2 } , Y = - \frac { k } { 3 } ( 50 - s ) ^ { 3 } + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions