Solved

Use Integration to Find a General Solution of the Differential dydx=xx+2\frac { d y } { d x } = x \sqrt { x + 2 }

Question 42

Multiple Choice

Use integration to find a general solution of the differential equation. dydx=xx+2\frac { d y } { d x } = x \sqrt { x + 2 }


A) y=25(x+2) 3/243(x+2) 5/2+Cy = \frac { 2 } { 5 } ( x + 2 ) ^ { 3 / 2 } - \frac { 4 } { 3 } ( x + 2 ) ^ { 5 / 2 } + C
B) y=25(x+2) 3/2(x+2) 3/2+Cy = \frac { 2 } { 5 } ( x + 2 ) ^ { 3 / 2 } - ( x + 2 ) ^ { 3 / 2 } + C
C) y=25(x+2) 5/243(x+2) 3/2+Cy = \frac { 2 } { 5 } ( x + 2 ) ^ { 5 / 2 } - \frac { 4 } { 3 } ( x + 2 ) ^ { 3 / 2 } + C
D) y=25(x+2) 3/2+43(x+2) 5/2+Cy = \frac { 2 } { 5 } ( x + 2 ) ^ { 3 / 2 } + \frac { 4 } { 3 } ( x + 2 ) ^ { 5 / 2 } + C
E) y=25(x+2) 243(x+2) +Cy = \frac { 2 } { 5 } ( x + 2 ) ^ { 2 } - \frac { 4 } { 3 } ( x + 2 ) + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions