Solved

Use Integration to Find a General Solution of the Differential dydx=x10ex11\frac { d y } { d x } = x ^ { 10 } e ^ { x ^ { 11 } }

Question 43

Multiple Choice

Use integration to find a general solution of the differential equation. dydx=x10ex11\frac { d y } { d x } = x ^ { 10 } e ^ { x ^ { 11 } }


A) y=110ex11+Cy = \frac { 1 } { 10 } e ^ { x ^ { 11 } } + C
B) y=111ex11+Cy = \frac { 1 } { 11 } e ^ { x ^ { 11 } } + C
C) y=x1111ex11+Cy = \frac { x ^ { 11 } } { 11 } e ^ { x ^ { 11 } } + C
D) y=11ex11+Cy = 11 e ^ { x ^ { 11 } } + C
E) y=10ex11+Cy = 10 e ^ { x ^ { 11 } } + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions