Solved

Use a Table of Integrals with Forms Involving the Trigonometric 11+e5xdx\int \frac { 1 } { 1 + e ^ { 5 x } } d x

Question 115

Multiple Choice

Use a table of integrals with forms involving the trigonometric functions to find the integral. 11+e5xdx\int \frac { 1 } { 1 + e ^ { 5 x } } d x


A) 11+e5xdx=x215log(e5x+1) +C\int \frac { 1 } { 1 + e ^ { 5 x } } d x = x ^ { 2 } - \frac { 1 } { 5 } \log \left( e ^ { 5 x } + 1 \right) + C
B) 11+e5xdx=xlog(e5x+1) +C\int \frac { 1 } { 1 + e ^ { 5 x } } d x = x - \log \left( e ^ { 5 x } + 1 \right) + C
C) 11+e5xdx=log(e5x+1) +C\int \frac { 1 } { 1 + e ^ { 5 x } } d x = \log \left( e ^ { 5 x } + 1 \right) + C
D) 11+e5xdx=x15log(e5x+1) +C\int \frac { 1 } { 1 + e ^ { 5 x } } d x = x - \frac { 1 } { 5 } \log \left( e ^ { 5 x } + 1 \right) + C
E) 11+e5xdx=15log(e5x+1) +C\int \frac { 1 } { 1 + e ^ { 5 x } } d x = \frac { 1 } { 5 } \log \left( e ^ { 5 x } + 1 \right) + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions