Solved

Find the Indefinite Integral tan5(x5)dx\int \tan ^ { 5 } \left( \frac { x } { 5 } \right) d x

Question 110

Multiple Choice

Find the indefinite integral. tan5(x5) dx\int \tan ^ { 5 } \left( \frac { x } { 5 } \right) d x


A) tan2(x5) (1+54tan2(x5) ) +5lncos(x5) +C\tan ^ { 2 } \left( \frac { x } { 5 } \right) \cdot \left( 1 + \frac { 5 } { 4 } \tan ^ { 2 } \left( \frac { x } { 5 } \right) \right) + 5 \ln \left| \cos \left( \frac { x } { 5 } \right) \right| + C
B) tan2(x5) (154tan2(x5) ) 5lncos(x5) +C\tan ^ { 2 } \left( \frac { x } { 5 } \right) \cdot \left( 1 - \frac { 5 } { 4 } \tan ^ { 2 } \left( \frac { x } { 5 } \right) \right) - 5 \ln \left| \cos \left( \frac { x } { 5 } \right) \right| + C
C) 52tan2(x5) (12tan2(x5) 1) 5lncos(x5) +C\frac { 5 } { 2 } \tan ^ { 2 } \left( \frac { x } { 5 } \right) \cdot \left( \frac { 1 } { 2 } \tan ^ { 2 } \left( \frac { x } { 5 } \right) - 1 \right) - 5 \ln \left| \cos \left( \frac { x } { 5 } \right) \right| + C
D) tan2(x5) (1+54tan2(x5) 5lncos(x5) +C\tan ^ { 2 } \left( \frac { x } { 5 } \right) \cdot \left( 1 + \frac { 5 } { 4 } \tan ^ { 2 } \left( \frac { x } { 5 } \right) | - 5 \ln | \cos \left( \frac { x } { 5 } \right) \mid + C \right.
E) 52tan2(x5) (154tan2(x5) 1) 5lncos(x5) +C\frac { 5 } { 2 } \tan ^ { 2 } \left( \frac { x } { 5 } \right) \cdot \left( 1 - \frac { 5 } { 4 } \tan ^ { 2 } \left( \frac { x } { 5 } \right) - 1 \right) - 5 \ln \left| \cos \left( \frac { x } { 5 } \right) \right| + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions