Solved

Use the Definition to Find the Taylor Series Centered At c

Question 145

Multiple Choice

Use the definition to find the Taylor series centered at c=0 for the function c = 0 \text { for the function } f(x) =sin4xf ( x ) = \sin 4 x


A) n=1(1) n+1(4x) 2n1(2n1) !\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n + 1 } ( 4 x ) ^ { 2 n - 1 } } { ( 2 n - 1 ) ! }
B) n=0(1) n(4x) 2n+1(2n+1) !\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } ( 4 x ) ^ { 2 n + 1 } } { ( 2 n + 1 ) ! }
C) n=1(1) n+1(4x) 2n+1(2n+1) !\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n + 1 } ( 4 x ) ^ { 2 n + 1 } } { ( 2 n + 1 ) ! }
D) n=0(1) 2n1(4x) 2n1n!\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { 2 n - 1 } ( 4 x ) ^ { 2 n - 1 } } { n ! }
E) n=1(1) n(4x) 2n+1(2n+1) !\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } ( 4 x ) ^ { 2 n + 1 } } { ( 2 n + 1 ) ! }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions