Solved

For the Function g(x)=111x2+1g ( x ) = \frac { 1 } { 11 x ^ { 2 } + 1 }

Question 46

Multiple Choice

 Use the power series 11+x=n=0(1) nxn to determine a power series centered at 0\text { Use the power series } \frac { 1 } { 1 + x } = \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } x ^ { n } \text { to determine a power series centered at } 0 for the function g(x) =111x2+1g ( x ) = \frac { 1 } { 11 x ^ { 2 } + 1 } .


A) n=0(11) nxn\sum _ { n = 0 } ^ { \infty } ( - 11 ) ^ { n } x ^ { n }
B) n=0(11) nx2n\sum _ { n = 0 } ^ { \infty } ( 11 ) ^ { n } x ^ { 2 n }
C) n=0(1) nx2n\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } x ^ { 2 n }
D) n=0(1) nxn\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } x ^ { n }
E) n=0(11) nx2n\sum _ { n = 0 } ^ { \infty } ( - 11 ) ^ { n } x ^ { 2 n }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions