Solved

Use the Binomial Series to Find the Maclaurin Series for the Function

Question 133

Multiple Choice

Use the binomial series to find the Maclaurin series for the function f(x) =181+x2f ( x ) = \frac { 1 } { \sqrt { 81 + x ^ { 2 } } }


A) 181+x2=19+n=0135(2n1) xn9nn!\frac { 1 } { \sqrt { 81 + x ^ { 2 } } } = \frac { 1 } { 9 } + \sum _ { n = 0 } ^ { \infty } \frac { 1 \cdot 3 \cdot 5 \cdots ( 2 n - 1 ) x ^ { n } } { 9 ^ { n } n ! }
B) 181+x2=19+n=1(1) n135(2n1) x2n2n(2n1) !92n+1\frac { 1 } { \sqrt { 81 + x ^ { 2 } } } = \frac { 1 } { 9 } + \sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } 1 \cdot 3 \cdot 5 \cdots ( 2 n - 1 ) x ^ { 2 n } } { 2 ^ { n } ( 2 n - 1 ) ! 9 ^ { 2 n + 1 } }
C) 181+x2=19+n=1(1) n135(2n1) x2n2nn!92n+1\frac { 1 } { \sqrt { 81 + x ^ { 2 } } } = \frac { 1 } { 9 } + \sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } 1 \cdot 3 \cdot 5 \cdots ( 2 n - 1 ) x ^ { 2 n } } { 2 ^ { n } n ! 9 ^ { 2 n + 1 } }
D) 181+x2=19+n=0135(2n1) xnn!\frac { 1 } { \sqrt { 81 + x ^ { 2 } } } = \frac { 1 } { 9 } + \sum _ { n = 0 } ^ { \infty } \frac { 1 \cdot 3 \cdot 5 \cdots ( 2 n - 1 ) x ^ { n } } { n ! }
E) 181+x2=19+n=0(1) n135(2n1) x2n2n92n+1\frac { 1 } { \sqrt { 81 + x ^ { 2 } } } = \frac { 1 } { 9 } + \sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } 1 \cdot 3 \cdot 5 \cdots ( 2 n - 1 ) x ^ { 2 n } } { 2 ^ { n } 9 ^ { 2 n + 1 } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions