Solved

Find the Maclaurin Series for the Function f(x)=cos(x17/2)f ( x ) = \cos \left( x ^ { 17 / 2 } \right)

Question 137

Multiple Choice

Find the Maclaurin series for the function f(x) =cos(x17/2) f ( x ) = \cos \left( x ^ { 17 / 2 } \right)


A) cos(x17/2) =1x172!+x344!\cos \left( x ^ { 17 / 2 } \right) = 1 - \frac { x ^ { 17 } } { 2 ! } + \frac { x ^ { 34 } } { 4 ! } - \cdots
B) cos(x17/2) =xx22!+x44!\cos \left( x ^ { 17 / 2 } \right) = x - \frac { x ^ { 2 } } { 2 ! } + \frac { x ^ { 4 } } { 4 ! } - \cdots
C) cos(x17/2) =x+x1717!+x3434!+\cos \left( x ^ { 17 / 2 } \right) = x + \frac { x ^ { 17 } } { 17 ! } + \frac { x ^ { 34 } } { 34 ! } + \cdots
D) cos(x17/2) =1+x172!+x344!+\cos \left( x ^ { 17 / 2 } \right) = 1 + \frac { x ^ { 17 } } { 2 ! } + \frac { x ^ { 34 } } { 4 ! } + \cdots
E) cos(x17/2) =xx1717!+x3434!\cos \left( x ^ { 17 / 2 } \right) = x - \frac { x ^ { 17 } } { 17 ! } + \frac { x ^ { 34 } } { 34 ! } - \cdots

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions