Solved

Find a Vector-Valued Function, Using the Given Parameter, to Represent  Surfaces  Parameter z=x225+y264,y+8x=0x=t\begin{array}{ll}\text { Surfaces } & \text { Parameter } \\z=\frac{x^{2}}{25}+\frac{y^{2}}{64}, y+8 x=0 & x=t\end{array}

Question 23

Multiple Choice

Find a vector-valued function, using the given parameter, to represent the intersection of the surfaces given below.  Surfaces  Parameter z=x225+y264,y+8x=0x=t\begin{array}{ll}\text { Surfaces } & \text { Parameter } \\z=\frac{x^{2}}{25}+\frac{y^{2}}{64}, y+8 x=0 & x=t\end{array}


A) r(t) =ti8tj+2526t2k\mathbf { r } ( t ) = t \mathbf { i } - 8 t \mathbf { j } + \frac { 25 } { 26 } t ^ { 2 } \mathbf { k }
B) r(t) =ti+2625t2j8tk\mathbf { r } ( t ) = t \mathbf { i } + \frac { 26 } { 25 } t ^ { 2 } \mathbf { j } - 8 t \mathbf { k }
C) r(t) =ti+8tj+2625t2k\mathbf { r } ( t ) = t \mathbf { i } + 8 t \mathbf { j } + \frac { 26 } { 25 } t ^ { 2 } \mathbf { k }
D) r(t) =ti+2526t2j8tk\mathbf { r } ( t ) = t \mathbf { i } + \frac { 25 } { 26 } t ^ { 2 } \mathbf { j } - 8 t \mathbf { k }
E) r(t) =ti8tj+2625t2k\mathbf { r } ( t ) = t \mathbf { i } - 8 t \mathbf { j } + \frac { 26 } { 25 } t ^ { 2 } \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions