Solved

Given the Vector-Valued Function Below, Evaluate r(11+Δt)r(11)\mathbf { r } ( 11 + \Delta t ) - \mathbf { r } ( 11 )

Question 18

Multiple Choice

Given the vector-valued function below, evaluate r(11+Δt) r(11) \mathbf { r } ( 11 + \Delta t ) - \mathbf { r } ( 11 ) r(t) =lnti+8tj+4tk\mathbf { r } ( t ) = \ln t \mathbf { i } + \frac { 8 } { t } \mathbf { j } + 4 t \mathbf { k }


A) ln(1+Δt11) i8Δt(11+Δt) 11j+4k\ln \left( 1 + \frac { \Delta t } { 11 } \right) \mathbf { i } - \frac { 8 \Delta t } { ( 11 + \Delta t ) 11 } \mathbf { j } + 4 \mathbf { k }
B) ln(1+Δt11) i+8Δt(11+Δt) 11j+4Δtk\ln \left( 1 + \frac { \Delta t } { 11 } \right) \mathbf { i } + \frac { 8 \Delta t } { ( 11 + \Delta t ) 11 } \mathbf { j } + 4 \Delta t \mathbf { k }
C) ln(1+Δt11) i8Δt(11+Δt) 11j+4Δtk\ln \left( 1 + \frac { \Delta t } { 11 } \right) \mathbf { i } - \frac { 8 \Delta t } { ( 11 + \Delta t ) 11 } \mathbf { j } + 4 \Delta t \mathbf { k }
D) ln(1+Δt11) i8Δt(11+Δt) j+4Δtk\ln \left( 1 + \frac { \Delta t } { 11 } \right) \mathbf { i } - \frac { 8 \Delta t } { ( 11 + \Delta t ) } \mathbf { j } + 4 \Delta t \mathbf { k }
E) ln(1Δt11) i8Δt(11+Δt) 11j+4Δtk\ln \left( 1 - \frac { \Delta t } { 11 } \right) \mathbf { i } - \frac { 8 \Delta t } { ( 11 + \Delta t ) 11 } \mathbf { j } + 4 \Delta t \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions