Solved

Find a Vector-Valued Function, Using the Given Parameter, to Represent  Surfaces  Parameter z=x2+y2,z=81x=9cos8πt\begin{array}{l}\text { Surfaces }&\text { Parameter }\\z=x^{2}+y^{2}, z=81&x=9 \cos 8 \pi t\end{array}

Question 45

Multiple Choice

Find a vector-valued function, using the given parameter, to represent the intersection of the surfaces given below.  Surfaces  Parameter z=x2+y2,z=81x=9cos8πt\begin{array}{l}\text { Surfaces }&\text { Parameter }\\z=x^{2}+y^{2}, z=81&x=9 \cos 8 \pi t\end{array}


A) r(t) =9i+9sin8πj+9cos8πk\mathbf { r } ( t ) = 9 \mathbf { i } + 9 \sin 8 \pi \mathbf { j } + 9 \cos 8 \pi \mathbf { k }
B) r(t) =9cos8πi+9sinπj+81k\mathbf { r } ( t ) = 9 \cos 8 \pi \mathbf { i } + 9 \sin \pi \mathbf { j } + 81 \mathbf { k }
C) r(t) =9cos8πi+9sin8πj+9k\mathbf { r } ( t ) = 9 \cos 8 \pi \mathbf { i } + 9 \sin 8 \pi \mathbf { j } + 9 \mathbf { k }
D) r(t) =9cos8πti+81j+9sin8πk\mathbf { r } ( t ) = 9 \cos 8 \pi t \mathbf { i } + 81 \mathbf { j } + 9 \sin 8 \pi \mathbf { k }
E) r(t) =9cos8πi+9sin8πj+81k\mathbf { r } ( t ) = 9 \cos 8 \pi \mathbf { i } + 9 \sin 8 \pi \mathbf { j } + 81 \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions