Solved

Find the Indefinite Integral Below (6t3i+25t4j+4t1/5k)dt\int \left( \frac { - 6 } { t ^ { 3 } } \mathbf { i } + 25 t ^ { 4 } \mathbf { j } + 4 t ^ { - 1 / 5 } \mathbf { k } \right) d t

Question 50

Multiple Choice

Find the indefinite integral below. (6t3i+25t4j+4t1/5k) dt\int \left( \frac { - 6 } { t ^ { 3 } } \mathbf { i } + 25 t ^ { 4 } \mathbf { j } + 4 t ^ { - 1 / 5 } \mathbf { k } \right) d t
Do not include an arbitrary constant vector.


A) 3t2i+5t5j+5t4/5k\frac { 3 } { t ^ { 2 } } \mathbf { i } + 5 t ^ { 5 } \mathbf { j } + 5 t ^ { 4 / 5 } \mathbf { k }
B) 3t2i+5t5j+5t5/4k\frac { 3 } { t ^ { 2 } } \mathbf { i } + 5 t ^ { 5 } \mathbf { j } + 5 t ^ { 5 / 4 } \mathbf { k }
C) 3t3i+5t5j+5t4/5k\frac { 3 } { t ^ { 3 } } \mathbf { i } + 5 t ^ { 5 } \mathbf { j } + 5 t ^ { 4 / 5 } \mathbf { k }
D) 3t2i+5t5j5t4/5k\frac { 3 } { t ^ { 2 } } \mathbf { i } + 5 t ^ { 5 } \mathbf { j } - 5 t ^ { 4 / 5 } \mathbf { k }
E) 3t2i+5t5j+5t4/5k- \frac { 3 } { t ^ { 2 } } \mathbf { i } + 5 t ^ { 5 } \mathbf { j } + 5 t ^ { 4 / 5 } \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions