Solved

Find the Principle Unit Normal Vector to the Curve Given r(t)=5costi+5sintj,t=5π3\mathbf { r } ( t ) = 5 \cos t \mathbf { i } + 5 \sin t \mathbf { j } , \quad t = \frac { 5 \pi } { 3 }

Question 17

Multiple Choice

Find the principle unit normal vector to the curve given below at the specified point. r(t) =5costi+5sintj,t=5π3\mathbf { r } ( t ) = 5 \cos t \mathbf { i } + 5 \sin t \mathbf { j } , \quad t = \frac { 5 \pi } { 3 }


A) N=(32,12}\mathbf { N } = \left( \frac { \sqrt { 3 } } { 2 } , \frac { 1 } { 2 } \right\}
B) N=(32,12) \mathbf { N } = \left( \frac { \sqrt { 3 } } { 2 } , - \frac { 1 } { 2 } \right)
C) N=(12,32) \mathbf { N } = \left( \frac { 1 } { 2 } , - \frac { \sqrt { 3 } } { 2 } \right)
D) N=(12,32) \mathbf { N } = \left( - \frac { 1 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right)
E) N=(12,32) \mathrm { N } = \left( - \frac { 1 } { 2 } , - \frac { \sqrt { 3 } } { 2 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions