Solved

Find the Divergence of the Vector Field F(x,y,z)=10x6i^xy5j^\overrightarrow { \mathbf { F } } ( x , y , z ) = 10 x ^ { 6 } \hat { \mathbf { i } } - x y ^ { 5 } \hat { \mathbf { j } }

Question 108

Multiple Choice

Find the divergence of the vector field. F(x,y,z) =10x6i^xy5j^\overrightarrow { \mathbf { F } } ( x , y , z ) = 10 x ^ { 6 } \hat { \mathbf { i } } - x y ^ { 5 } \hat { \mathbf { j } }


A) divF(x,y,z) =60x76xy6\operatorname { div } \overrightarrow { \mathrm { F } } ( x , y , z ) = 60 x ^ { 7 } - 6 x y ^ { 6 }
B) divF(x,y,z) =60x55xy4\quad \operatorname { div } \overrightarrow { \mathrm { F } } ( x , y , z ) = 60 x ^ { 5 } - 5 x y ^ { 4 }
C) divF(x,y,z) =10x6i^6xy5j^\operatorname { div } \overrightarrow { \mathrm { F } } ( x , y , z ) = 10 x ^ { 6 } \hat { \mathbf { i } } - 6 x y ^ { 5 } \hat { \mathbf { j } }
D) divF(x,y,z) =107x716xy6\operatorname { div } \overrightarrow { \mathrm { F } } ( x , y , z ) = \frac { 10 } { 7 } x ^ { 7 } - \frac { 1 } { 6 } x y ^ { 6 }
E) divF(x,y,z) =107x7i^15xy4j^\operatorname { div } \overrightarrow { \mathrm { F } } ( x , y , z ) = \frac { 10 } { 7 } x ^ { 7 } \hat { \mathbf { i } } - \frac { 1 } { 5 } x y ^ { 4 } \hat { \mathbf { j } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions