Solved

Find the Particular Solution of the Differential Equation 1x3+y3(x2dx+y2dy)=0\frac { 1 } { \sqrt { x ^ { 3 } + y ^ { 3 } } } \left( x ^ { 2 } d x + y ^ { 2 } d y \right) = 0

Question 43

Multiple Choice

Find the particular solution of the differential equation 1x3+y3(x2dx+y2dy) =0\frac { 1 } { \sqrt { x ^ { 3 } + y ^ { 3 } } } \left( x ^ { 2 } d x + y ^ { 2 } d y \right) = 0 that satisfies the initial condition (8,8) ( 8,8 )


A) 1x3+y3=11024\frac { 1 } { x ^ { 3 } + y ^ { 3 } } = \frac { 1 } { 1024 }
B) 1x3+y3=132\frac { 1 } { \sqrt { x ^ { 3 } + y ^ { 3 } } } = \frac { 1 } { 32 }
C) x3+y3=32\sqrt { x ^ { 3 } + y ^ { 3 } } = 32
D) x3y3=1024x ^ { 3 } - y ^ { 3 } = 1024
E) 1x2+y2=1128\frac { 1 } { x ^ { 2 } + y ^ { 2 } } = \frac { 1 } { 128 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions