Solved

Taylor's Theorem to Find the First Four Terms of the Series

Question 22

Multiple Choice

Taylor's Theorem to find the first four terms of the series solution of ytt+x2yt(cosx) y=0y ^ { tt } + x ^ { 2 } y ^ { t } - ( \cos x ) y = 0 given the initial conditions y(0) =7y ( 0 ) = 7 , and yt(0) =4y ^ {t } ( 0 ) = 4


A) y=7+41!x+72!x283!x3+y = 7 + \frac { 4 } { 1 ! } x + \frac { 7 } { 2 ! } x ^ { 2 } - \frac { 8 } { 3 ! } x ^ { 3 } + \cdots
B) y=7+41!x+72!x2+43!x3+y = 7 + \frac { 4 } { 1 ! } x + \frac { 7 } { 2 ! } x ^ { 2 } + \frac { 4 } { 3 ! } x ^ { 3 } + \cdots
C) y=7+41!x+142!x2+83!x3+y = 7 + \frac { 4 } { 1 ! } x + \frac { 14 } { 2 ! } x ^ { 2 } + \frac { 8 } { 3 ! } x ^ { 3 } + \cdots
D) y=7+41!x+42!x2143!x3+y = 7 + \frac { 4 } { 1 ! } x + \frac { 4 } { 2 ! } x ^ { 2 } - \frac { 14 } { 3 ! } x ^ { 3 } + \cdots
E) y=7+41!x+42!x2+73!x3+y = 7 + \frac { 4 } { 1 ! } x + \frac { 4 } { 2 ! } x ^ { 2 } + \frac { 7 } { 3 ! } x ^ { 3 } + \cdots

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions