Solved

Find the Particular Solution of the Differential Equation e8x(sin8ydx+cos8ydy)=0e ^ { 8 x } ( \sin 8 y d x + \cos 8 y d y ) = 0

Question 19

Multiple Choice

Find the particular solution of the differential equation
e8x(sin8ydx+cos8ydy) =0e ^ { 8 x } ( \sin 8 y d x + \cos 8 y d y ) = 0 that satisfies the initial condition y(0) =πy ( 0 ) = \pi .


A) e8xsin8y=1e ^ { 8 x } \sin 8 y = 1
B) e8xsin8y=e8xe ^ { 8 x } \sin 8 y = e ^ { 8 x }
C) e8xcos8y=0e ^ { 8 x } \cos 8 y = 0
D) e8xcos8y=1e ^ { 8 x } \cos 8 y = 1
E) e8xsin8y=0e ^ { 8 x } \sin 8 y = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions