Solved

Use Integration by Parts to Establish a Reduction Formula for the Integral

Question 34

Multiple Choice

Use integration by parts to establish a reduction formula for the integral.
- secnxdx,n1\int \sec ^ { n } x d x , n \neq 1


A) secnxdx=secn2xtanx(n2) secn2xtanxdx\int \sec ^ { n } x d x = \sec ^ { n - 2 } x \tan x - ( n - 2 ) \int \sec ^ { n - 2 } x \tan x d x
B) secnxdx=1n1secn2xtanx+n2n1secn2xdx\int \sec ^ { n } x d x = \frac { 1 } { n - 1 } \sec ^ { n - 2 } x \tan x + \frac { n - 2 } { n - 1 } \int \sec ^ { n - 2 } x d x
C) secnxdx=secn2xtanx+(n2) secn2xdx\int \sec ^ { n } x d x = \sec ^ { n - 2 } x \tan x + ( n - 2 ) \int \sec ^ { n - 2 } x d x
D) secnxdx=1nsecnxtanxn1nsecn1xdx\int \sec ^ { n } x d x = \frac { 1 } { n } \sec ^ { n } x \tan x - \frac { n - 1 } { n } \int \sec ^ { n - 1 } x d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions