Solved

Evaluate the Integral f1(x)dx=xf1(x)f(y)dy,y=f1(x)\int f ^ { - 1 } ( x ) d x = x f ^ { - 1 } ( x ) - \int f ( y ) d y , y = f ^ { - 1 } ( x )

Question 33

Multiple Choice

Evaluate the integral.
-Use the formula f1(x) dx=xf1(x) f(y) dy,y=f1(x) \int f ^ { - 1 } ( x ) d x = x f ^ { - 1 } ( x ) - \int f ( y ) d y , y = f ^ { - 1 } ( x ) to evaluate the integral. cos1xdx\int \cos ^ { - 1 } x d x


A) xcos1xsin(cos1x) +Cx \cos ^ { - 1 } x - \sin \left( \cos ^ { - 1 } x \right) + C
B) xcos1xsinx+Cx \cos ^ { - 1 } x - \sin x + C
C) xcos1x+sin(cos1x) +Cx \cos ^ { - 1 } x + \sin \left( \cos ^ { - 1 } x \right) + C
D) xcos1xx+Cx \cos ^ { - 1 } x - x + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions