Solved

Use Integration by Parts to Establish a Reduction Formula for the Integral

Question 14

Multiple Choice

Use integration by parts to establish a reduction formula for the integral.
- xnex2dx\int x ^ { n } e ^ { - x ^ { 2 } } d x


A) xnex2dx=2xn1ex22(n1) xn2ex2dx\int x ^ { n } e ^ { - x ^ { 2 } } d x = - 2 x ^ { n - 1 } e ^ { - x ^ { 2 } } - 2 ( n - 1 ) \int x ^ { n - 2 } e ^ { - x ^ { 2 } } d x
B) xnex2dx=nxn1ex2+2nxn1ex2dx\int x ^ { n } e ^ { - x ^ { 2 } } d x = n x ^ { n - 1 } e ^ { - x ^ { 2 } } + 2 n \int x ^ { n - 1 } e ^ { - x ^ { 2 } } d x
C) xnex2dx=12xnex2+n2xn1ex2dx\int x ^ { n } e ^ { - x ^ { 2 } } d x = - \frac { 1 } { 2 } x ^ { n } e ^ { - x ^ { 2 } } + \frac { n } { 2 } \int x ^ { n - 1 } e ^ { - x ^ { 2 } } d x
D) xnex2dx=12xnex2+n2xn1ex2dx \int x^{n} e^{-x^{2}} d x=-\frac{1}{2} x^{n} e^{-x^{2}}+\frac{n}{2} \int x^{n-1} e^{-x^{2}} d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions