Solved

Find the Extreme Values of the Function and Where They y=lnxx2y = \frac { \ln x } { x ^ { 2 } }

Question 9

Multiple Choice

Find the extreme values of the function and where they occur.
- y=lnxx2y = \frac { \ln x } { x ^ { 2 } }


A) Maximum value is 12e\frac { 1 } { 2 \mathrm { e } } at x=e1/2\mathrm { x } = \mathrm { e } ^ { 1 / 2 } ; minimum value is 0 at x=1\mathrm { x } = 1 .
B) Minimum value is 12e\frac { 1 } { 2 \mathrm { e } } at x=e1/2\mathrm { x } = \mathrm { e } ^ { 1 / 2 } ; no maximum value.
C) Maximum value is 12e\frac { 1 } { 2 \mathrm { e } } at x=e1/2\mathrm { x } = \mathrm { e } ^ { 1 / 2 } ; no minimum value.
D) None

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions