Solved

Find the Values of X for Which the Geometric Series n=0(1)n51(8+sinx)n\sum _ { \mathrm { n } = 0 } ^ { \infty } \frac { ( - 1 ) ^ { \mathrm { n } } } { 5 } \frac { 1 } { ( 8 + \sin \mathrm { x } ) ^ { \mathrm { n } } }

Question 120

Multiple Choice

Find the values of x for which the geometric series converges.
- n=0(1) n51(8+sinx) n\sum _ { \mathrm { n } = 0 } ^ { \infty } \frac { ( - 1 ) ^ { \mathrm { n } } } { 5 } \frac { 1 } { ( 8 + \sin \mathrm { x } ) ^ { \mathrm { n } } }


A) diverges for all xx
B) <x<- \infty < x < \infty
C) {xx\{ x \mid x is not a multiple of π \pi \rangle
D) {xx\{ x \mid x is not a multiple of 2π2 \pi \rangle

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions