Solved

Find a Formula for the Function Graphed f(x)={6x,0x3x,3<x6f ( x ) = \left\{ \begin{array} { l l } 6 - x , & 0 \leq x \leq 3 \\ x , & 3 < x \leq 6 \end{array} \right.

Question 96

Multiple Choice

Find a formula for the function graphed.
- Find a formula for the function graphed. -   A)   f ( x )  = \left\{ \begin{array} { l l } 6 - x , & 0 \leq x \leq 3 \\ x , & 3 < x \leq 6 \end{array} \right.  B)   f ( x )  = \left\{ \begin{array} { l l } x + 6 , & 0 \leq x \leq 3 \\ - x , & 3 < x \leq 6 \end{array} \right.  C)   f ( x )  = \left\{ \begin{array} { l l } x , & 0 \leq x \leq 3 \\ 6 - x , & 3 < x \leq 6 \end{array} \right.  D)   f ( x )  = \left\{ \begin{array} { l l } - x , & 0 \leq x \leq 3 \\ x + 6 , & 3 < x \leq 6 \end{array} \right.


A) f(x) ={6x,0x3x,3<x6f ( x ) = \left\{ \begin{array} { l l } 6 - x , & 0 \leq x \leq 3 \\ x , & 3 < x \leq 6 \end{array} \right.
B) f(x) ={x+6,0x3x,3<x6f ( x ) = \left\{ \begin{array} { l l } x + 6 , & 0 \leq x \leq 3 \\ - x , & 3 < x \leq 6 \end{array} \right.
C) f(x) ={x,0x36x,3<x6f ( x ) = \left\{ \begin{array} { l l } x , & 0 \leq x \leq 3 \\ 6 - x , & 3 < x \leq 6 \end{array} \right.
D) f(x) ={x,0x3x+6,3<x6f ( x ) = \left\{ \begin{array} { l l } - x , & 0 \leq x \leq 3 \\ x + 6 , & 3 < x \leq 6 \end{array} \right.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions