Solved

Find a Formula for the Function Graphed B) C) D)

Question 92

Multiple Choice

Find a formula for the function graphed.
- Find a formula for the function graphed. -   A)   f ( x )  = \left\{ \begin{array} { l l } - \frac { 1 } { 2 } x + 1 , & - 8 \leq x \leq - 2 \\ 5 , & - 2 < x \leq 3 \\ x - 6 , & 3 < x \leq 8 \end{array} \quad \right.    B)   f ( x )  = \left\{ \begin{array} { l l } \frac { 1 } { 2 } x + 1 , & - 8 < x \leq - 2 \\ 5 , & - 2 < x \leq 3 \\ 6 - x , & 3 < x < 8 \end{array} \right.   C)   f ( x )  = \left\{ \begin{array} { l l } \frac { 1 } { 2 } x + 1 , & - 8 \leq x \leq - 2 \\ 5 , & - 2 < x < 3 \\ 6 - x , & 3 \leq x \leq 8 \end{array} \right.   D)   f ( x )  = \left\{ \begin{array} { l r } \frac { 1 } { 2 } x + 1 , & - 8 \leq x \leq - 2 \\ 5 , & - 2 < x \leq 3 \\ 6 - x , & 3 < x \leq 8 \end{array} \right.


A) f(x) ={12x+1,8x25,2<x3x6,3<x8f ( x ) = \left\{ \begin{array} { l l } - \frac { 1 } { 2 } x + 1 , & - 8 \leq x \leq - 2 \\ 5 , & - 2 < x \leq 3 \\ x - 6 , & 3 < x \leq 8 \end{array} \quad \right.

B) f(x) ={12x+1,8<x25,2<x36x,3<x<8f ( x ) = \left\{ \begin{array} { l l } \frac { 1 } { 2 } x + 1 , & - 8 < x \leq - 2 \\ 5 , & - 2 < x \leq 3 \\ 6 - x , & 3 < x < 8 \end{array} \right.

C) f(x) ={12x+1,8x25,2<x<36x,3x8f ( x ) = \left\{ \begin{array} { l l } \frac { 1 } { 2 } x + 1 , & - 8 \leq x \leq - 2 \\ 5 , & - 2 < x < 3 \\ 6 - x , & 3 \leq x \leq 8 \end{array} \right.

D) f(x) ={12x+1,8x25,2<x36x,3<x8f ( x ) = \left\{ \begin{array} { l r } \frac { 1 } { 2 } x + 1 , & - 8 \leq x \leq - 2 \\ 5 , & - 2 < x \leq 3 \\ 6 - x , & 3 < x \leq 8 \end{array} \right.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions