Solved

If ff Is a Differentiable Function, Find an Expression for the Derivative

Question 139

Multiple Choice

If ff is a differentiable function, find an expression for the derivative of y=x3f(x) y = x ^ { 3 } f ( x ) .


A) ddx(x3f(x) ) =3x2f(x) +x3f(x) \frac { d } { d x } \left( x ^ { 3 } f ( x ) \right) = 3 x ^ { 2 } f ( x ) + x ^ { 3 } f ^ { \prime } ( x )

B) ddx(x3f(x) ) =3x3f(x) +x2f(x) \frac { d } { d x } \left( x ^ { 3 } f ( x ) \right) = 3 x ^ { 3 } f ( x ) + x ^ { 2 } f ^ { \prime } ( x )

C)
ddx(x3f(x) ) =2x2f(x) x3f(x) \frac { d } { d x } \left( x ^ { 3 } f ( x ) \right) = 2 x ^ { 2 } f ( x ) - x ^ { 3 } f ^ { \prime } ( x )

D) ddx(x3f(x) ) =3x2f(x) x3f(x) \frac { d } { d x } \left( x ^ { 3 } f ( x ) \right) = 3 x ^ { 2 } f ( x ) - x ^ { 3 } f ^ { \prime } ( x )

E)
ddx(x3f(x) ) =3x3f(x) x2f(x) \frac { d } { d x } \left( x ^ { 3 } f ( x ) \right) = 3 x ^ { 3 } f ( x ) - x ^ { 2 } f ^ { \prime } ( x )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions