Solved

Find the Derivative of the Function and Simplify Your Answer y=cos2xy = \cos ^ { 2 } x

Question 7

Multiple Choice

Find the derivative of the function and simplify your answer by using the trigonometric identities y=cos2xy = \cos ^ { 2 } x


A) 2cos2xsin2x=2sin2x- 2 \cos ^ { 2 } x \sin ^ { 2 } x = 2 \sin 2 x
B) 2cosxsinx=sin2x2 \cos x \sin x = \sin 2 x
C) 2cosxsinx=sin2x- 2 \cos x \sin x = - \sin 2 x
D) 2cos2xsinx=2sinx2 \cos ^ { 2 } x \sin x = 2 \sin x
E) 2cos2xsin2x=2sin2x2 \cos ^ { 2 } x \sin ^ { 2 } x = 2 \sin 2 x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions