Solved

Find the Extrema of the Function f(x)=13exf ( x ) = \frac { 1 } { 3 - e ^ { - x } }

Question 81

Multiple Choice

Find the extrema of the function f(x) =13exf ( x ) = \frac { 1 } { 3 - e ^ { - x } } by analyzing its graph below.  Find the extrema of the function  f ( x )  = \frac { 1 } { 3 - e ^ { - x } }  by analyzing its graph below.   A) (0, 1)  B) no relative extrema C)   \left( 3 , e ^ { 3 } \right)   , (0, 0)  D)   ( 1,3 )  , \left( 3 , e ^ { - 3 } \right)   E)   \left( 3 , e ^ { - 3 } \right)


A) (0, 1)
B) no relative extrema
C) (3,e3) \left( 3 , e ^ { 3 } \right) , (0, 0)
D) (1,3) ,(3,e3) ( 1,3 ) , \left( 3 , e ^ { - 3 } \right)
E) (3,e3) \left( 3 , e ^ { - 3 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions