Solved

Find the Derivative of the Function y=lnx216y = \ln \sqrt { x ^ { 2 } - 16 }

Question 103

Multiple Choice

Find the derivative of the function y=lnx216y = \ln \sqrt { x ^ { 2 } - 16 } .


A) dydx=12x16\frac { d y } { d x } = \frac { 1 } { 2 x - 16 }
B) dydx=x2x16\frac { d y } { d x } = \frac { x } { 2 x - 16 }
C) dydx=1x216\frac { d y } { d x } = \frac { 1 } { x ^ { 2 } - 16 }
D) dydx=xx216\frac { d y } { d x } = \frac { x } { x ^ { 2 } - 16 }
E) dydx=2xx216\frac { d y } { d x } = \frac { 2 x } { \sqrt { x ^ { 2 } - 16 } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions