Solved

Solve the Inequality 43x13| 4 - 3 x | \leq 13

Question 178

Multiple Choice

Solve the inequality. Graph the solution set and write it using interval notation. 43x13| 4 - 3 x | \leq 13


A) x(,173]x \in \left( - \infty , \frac { 17 } { 3 } \right] ;
 Solve the inequality. Graph the solution set and write it using interval notation.  | 4 - 3 x | \leq 13  A)   x \in \left( - \infty , \frac { 17 } { 3 } \right] ;   B)   x \in ( - \infty , - 3 )  \cup \left( \frac { 17 } { 3 } , \infty \right)  ;   C)   x \in [ - 3 , \infty )  ;   D)   x \in \left[ - 3 , \frac { 17 } { 3 } \right] ;   E)  no solution;
B) x(,3) (173,) x \in ( - \infty , - 3 ) \cup \left( \frac { 17 } { 3 } , \infty \right) ;
 Solve the inequality. Graph the solution set and write it using interval notation.  | 4 - 3 x | \leq 13  A)   x \in \left( - \infty , \frac { 17 } { 3 } \right] ;   B)   x \in ( - \infty , - 3 )  \cup \left( \frac { 17 } { 3 } , \infty \right)  ;   C)   x \in [ - 3 , \infty )  ;   D)   x \in \left[ - 3 , \frac { 17 } { 3 } \right] ;   E)  no solution;
C) x[3,) x \in [ - 3 , \infty ) ;
 Solve the inequality. Graph the solution set and write it using interval notation.  | 4 - 3 x | \leq 13  A)   x \in \left( - \infty , \frac { 17 } { 3 } \right] ;   B)   x \in ( - \infty , - 3 )  \cup \left( \frac { 17 } { 3 } , \infty \right)  ;   C)   x \in [ - 3 , \infty )  ;   D)   x \in \left[ - 3 , \frac { 17 } { 3 } \right] ;   E)  no solution;
D) x[3,173]x \in \left[ - 3 , \frac { 17 } { 3 } \right] ;
 Solve the inequality. Graph the solution set and write it using interval notation.  | 4 - 3 x | \leq 13  A)   x \in \left( - \infty , \frac { 17 } { 3 } \right] ;   B)   x \in ( - \infty , - 3 )  \cup \left( \frac { 17 } { 3 } , \infty \right)  ;   C)   x \in [ - 3 , \infty )  ;   D)   x \in \left[ - 3 , \frac { 17 } { 3 } \right] ;   E)  no solution;
E) no solution;
 Solve the inequality. Graph the solution set and write it using interval notation.  | 4 - 3 x | \leq 13  A)   x \in \left( - \infty , \frac { 17 } { 3 } \right] ;   B)   x \in ( - \infty , - 3 )  \cup \left( \frac { 17 } { 3 } , \infty \right)  ;   C)   x \in [ - 3 , \infty )  ;   D)   x \in \left[ - 3 , \frac { 17 } { 3 } \right] ;   E)  no solution;

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions