Solved

The Area of the Surface Generated by Revolving the Curve x(t)=3t2,y=2t3x ( t ) = 3 t ^ { 2 } , y = 2 t ^ { 3 }

Question 40

Multiple Choice

The area of the surface generated by revolving the curve x(t) =3t2,y=2t3x ( t ) = 3 t ^ { 2 } , y = 2 t ^ { 3 } with t[0,1]t \in [ 0,1 ] about the y-axis is


A) 24π(1+2) 7\frac { 24 \pi ( 1 + \sqrt { 2 } ) } { 7 }
B) 24π(21) 3\frac { 24 \pi ( \sqrt { 2 } - 1 ) } { 3 }
C) 24π(21) 5\frac { 24 \pi ( \sqrt { 2 } - 1 ) } { 5 }
D) 24π(1+2) 5\frac { 24 \pi ( 1 + \sqrt { 2 } ) } { 5 }
E) 24π(1+2) 3\frac { 24 \pi ( 1 + \sqrt { 2 } ) } { 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions