Solved

The Arc Length Of y=ln(secx) for x[0,π4]y = \ln ( \sec x ) \text { for } x \in \left[ 0 , \frac { \pi } { 4 } \right]

Question 99

Multiple Choice

The arc length of y=ln(secx)  for x[0,π4]y = \ln ( \sec x ) \text { for } x \in \left[ 0 , \frac { \pi } { 4 } \right] is


A) ln(322) 2\frac { \ln ( 3 - 2 \sqrt { 2 } ) } { 2 }
B) ln(3+2) 2\frac { \ln ( 3 + \sqrt { 2 } ) } { 2 }
C) ln(3+22) 2\frac { \ln ( 3 + 2 \sqrt { 2 } ) } { 2 }
D) ln(32) 2\frac { \ln ( 3 - \sqrt { 2 } ) } { 2 }
E) ln(32) 2\frac { \ln ( 3 - \sqrt { 2 } ) } { 2 } .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions