Solved

Let a Denote the Area Enclosed by the Graph f(x)=(x1)2,f ( x ) = ( x - 1 ) ^ { 2 },

Question 84

Multiple Choice

Let A denote the area enclosed by the graph f(x) =(x1) 2,f ( x ) = ( x - 1 ) ^ { 2 }, the x-axis, and the lines x = 2 and x = 9. Graphing the region and using plane geometry, we can find that A is


A)
limnk=1n(7kn1) 2(7n) \lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 7 k } { n } - 1 \right) ^ { 2 } \left( \frac { 7 } { n } \right)
B) limnk=1n(7kn+1) 2(7n) \lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 7 k } { n } + 1 \right) ^ { 2 } \left( \frac { 7 } { n } \right)
C) limnk=1n(7kn+2) 2(7n) \lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 7 k } { n } + 2 \right) ^ { 2 } \left( \frac { 7 } { n } \right)
D) limnk=1n(9kn+2) 2(9n) \lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 9 k } { n } + 2 \right) ^ { 2 } \left( \frac { 9 } { n } \right)
E) limnk=1n(9kn+1) 2(9n) \lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 9 k } { n } + 1 \right) ^ { 2 } \left( \frac { 9 } { n } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions