Solved

Let a Denote the Area Enclosed by the Graph f(x)=12x3,f ( x ) = \frac { 1 } { 2 } x ^ { 3 },

Question 29

Multiple Choice

Let A denote the area enclosed by the graph f(x) =12x3,f ( x ) = \frac { 1 } { 2 } x ^ { 3 }, the x-axis, and the lines x = 0 and x = 2. Graphing the region and using plane geometry, we can find that A is


A) limnk=1n(2k+1n) 3(2n) \lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 2 k + 1 } { n } \right) ^ { 3 } \left( \frac { 2 } { n } \right)
B) limnk=1n(2k1n) 3(2n) \lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 2 k - 1 } { n } \right) ^ { 3 } \left( \frac { 2 } { n } \right)
C) limnk=1n(2k+2n) 3(1n) \lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 2 k + 2 } { n } \right) ^ { 3 } \left( \frac { 1 } { n } \right)
D) limnk=1n(2kn) 3(2n) \lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 2 k } { n } \right) ^ { 3 } \left( \frac { 2 } { n } \right)
E) limnk=1n(2kn) 3(1n) \lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \left( \frac { 2 k } { n } \right) ^ { 3 } \left( \frac { 1 } { n } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions