Solved

Using Implicit Differentiation On ey+sin(xy)=x2,ye ^ { y } + \sin ( x - y ) = x ^ { 2 } , y ^ { \prime }

Question 77

Multiple Choice

Using implicit differentiation on ey+sin(xy) =x2,ye ^ { y } + \sin ( x - y ) = x ^ { 2 } , y ^ { \prime } is


A) cos(xy) 2xeycos(xy) \frac { \cos ( x - y ) - 2 x } { e ^ { y } - \cos ( x - y ) }
B) 12xey1\frac { 1 - 2 x } { e ^ { y } - 1 }
C) 21xey1\frac { 2 - 1 x } { e ^ { y } - 1 }
D) 2xcos(xy) eycos(xy) \frac { 2 x - \cos ( x - y ) } { e ^ { y } - \cos ( x - y ) }
E) 2x+cos(xy) eycos(xy) \frac { 2 x + \cos ( x - y ) } { e ^ { y } - \cos ( x - y ) }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions