Solved

Let y=ln(tan1x)y = \ln \left( \tan ^ { - 1 } x \right)

Question 51

Multiple Choice

Let y=ln(tan1x) y = \ln \left( \tan ^ { - 1 } x \right) Then yy ^ { \prime } is


A) tan1xx2+1- \frac { \tan ^ { - 1 } x } { x ^ { 2 } + 1 }
B) tan1xx2+1\frac { \tan ^ { - 1 } x } { x ^ { 2 } + 1 }
C) x2+1tan1x\frac { x ^ { 2 } + 1 } { \tan ^ { - 1 } x }
D) 1tan1x(x2+1) \frac { 1 } { \tan ^ { - 1 } x \left( x ^ { 2 } + 1 \right) }
E) 1tan1x(x2+1) - \frac { 1 } { \tan ^ { - 1 } x \left( x ^ { 2 } + 1 \right) }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions