Solved

Using Maclaurin Series, the General Series Solution, with the First y+2x2y=0y ^ { \prime \prime } + 2 x ^ { 2 } y = 0

Question 20

Multiple Choice

Using Maclaurin series, the general series solution, with the first three nonzero terms, of the differential equation y+2x2y=0y ^ { \prime \prime } + 2 x ^ { 2 } y = 0 is


A) y=A(1x46+x8168) +B(x+x510+x9360+) y = A \left( 1 - \frac { x ^ { 4 } } { 6 } + \frac { x ^ { 8 } } { 168 } - \cdots \right) + B \left( x + \frac { x ^ { 5 } } { 10 } + \frac { x ^ { 9 } } { 360 } + \cdots \right)
B) A(1+x46+x8168+) +B(xx510+x9360) A \left( 1 + \frac { x ^ { 4 } } { 6 } + \frac { x ^ { 8 } } { 168 } + \cdots \right) + B \left( x - \frac { x ^ { 5 } } { 10 } + \frac { x ^ { 9 } } { 360 } - \cdots \right)
C) y=A(1x46+x8168) +B(xx510+x9360) y = A \left( 1 - \frac { x ^ { 4 } } { 6 } + \frac { x ^ { 8 } } { 168 } - \cdots \right) + B \left( x - \frac { x ^ { 5 } } { 10 } + \frac { x ^ { 9 } } { 360 } - \cdots \right)
D) y=A(1x46+x8168) +B(xx510x9360) y = A \left( 1 - \frac { x ^ { 4 } } { 6 } + \frac { x ^ { 8 } } { 168 } - \cdots \right) + B \left( x - \frac { x ^ { 5 } } { 10 } - \frac { x ^ { 9 } } { 360 } - \cdots \right)
E) y=A(1x46x8168) +B(xx510+x9360) y = A \left( 1 - \frac { x ^ { 4 } } { 6 } - \frac { x ^ { 8 } } { 168 } - \cdots \right) + B \left( x - \frac { x ^ { 5 } } { 10 } + \frac { x ^ { 9 } } { 360 } - \cdots \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions