Solved

By Fubini's Theorem, the Double Integral \iint R 2xtan(y)dA2 x \tan ( y ) d A

Question 170

Multiple Choice

By Fubini's Theorem, the double integral \iint R 2xtan(y) dA2 x \tan ( y ) d A with R={(x,y) :0x1,0yπ4}R = \left\{ ( x , y ) : 0 \leq x \leq 1,0 \leq y \leq \frac { \pi } { 4 } \right\} is


A) ln32\frac { \ln 3 } { 2 }
B) ln22\frac { \ln 2 } { 2 }
C) ln24\frac { \ln 2 } { 4 }
D) ln23\frac { \ln 2 } { 3 }
E) ln34\frac { \ln 3 } { 4 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions